Beyond Integrated Neuro-fuzzy Systems: Reviews, Prospects, Perspectives and Directions
نویسنده
چکیده
Neuro-fuzzy computing, which provides efficient information processing capability by devising methodologies and algorithms for modeling uncertainty and imprecise information, forms at this juncture, a key component of soft computing. An integrated neuro-fuzzy system is simply a fuzzy inference system trained by a neural networklearning algorithm. The learning mechanism fine-tunes the underlying fuzzy inference system. Integrated neurofuzzy model makes use of the synergetic and complementary features of neural networks and fuzzy inference system and in most cases better results can be obtained rather than in a stand-alone mode. This paper presents some short fundamental concepts and modeling aspects of neuro-fuzzy systems emphasizing on Takagi Sugeno and Mamdani fuzzy inference system. Some short reviews of neuro-fuzzy models that have evolved in the past few years are discussed further. The paper concludes with an attempt to throw light on future research directions and some of the problems to be addressed that go beyond the current neuro-fuzzy algorithms.
منابع مشابه
Beyond Neuro{fuzzy: Perspectives and Directions
The interest in neuro{fuzzy systems has grown tremendously over the last few years. First approaches concentrated mainly on neuro{fuzzy controllers, whereas newer approaches can also be found in the domain of data analysis. After successful applications in Japan neuro{fuzzy concepts also nd their way into the European industries, though mainly simple models, like FAMs, still prevail. This paper...
متن کاملNeuro-fuzzy Systems: Review and Prospects
This paper reviews neuro-fuzzy systems, which combine methods from neural network theory with fuzzy systems. Such combinations have been considered for several years already. However, the term neuro-fuzzy still lacks proper deenition, and still has the avour of a buzzword to it. Surprisingly few neuro-fuzzy approaches do actually employ neural networks, even though they are very often depicted ...
متن کاملComparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کاملA Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh) Reservoir as an Iranian Gas Field, Persian Gulf Basin
Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover ...
متن کاملElectricity Load Forecasting by Combining Adaptive Neuro-fuzzy Inference System and Seasonal Auto-Regressive Integrated Moving Average
Nowadays, electricity load forecasting, as one of the most important areas, plays a crucial role in the economic process. What separates electricity from other commodities is the impossibility of storing it on a large scale and cost-effective construction of new power generation and distribution plants. Also, the existence of seasonality, nonlinear complexity, and ambiguity pattern in electrici...
متن کامل